An Energy Information Gateway for use in
Residential and Commercial Environments

Daniel Arnold, Student Member, IEEE,, Michael Sankur, and Dave Auslander

Abstract—Growing demands for products which enable con-
sumers to manage their energy use more efficiently has led
to the development of Energy Information Gateways, which
are just beginning to gain traction in the marketplace. Such
devices are envisioned to provide a communications and control
infrastructure for appliances within their domain of influence,
as well as communication with metering equipment. All relevant
energy consumption information is expected to be relayed to
the occupant in a practical manner. This paper outlines a
software architecture for an EIG which is applicable to both
residential and commercial environments. The software package
utilizes the highly modular Open Services Gateway Initiative
(OSGI) JAVA software framework to allow customization of
individual EIG functionality and facilitates interoperability for
existing smart grid products. In addition, the software in question
provides a connection to external demand response resources and
hosts a dynamic web based user interface to facilitate occupant
interaction.

Index Terms—Smart Grid, Communications, Demand Re-
sponse, Demand Side Energy Management, Energy Information
Gateway, Residential Energy Gateway

I. INTRODUCTION

OMPUTATION platforms used to enable residential and

commercial demand side energy management, often re-
ferred to as gateways, are devices gaining popularity with
various Smart Grid entities. From the perspective of utilities,
the growing presence of smart meters in homes across America
could be coupled with such computing platforms to enable
increased residential demand response during critical time
periods. In the marketplace, gateway products fulfill a vari-
ety of roles, including enabling residential demand response,
communicating energy usage information to the occupant, and
interfacing with smart appliances.

More specific examples of the functionality of Gateways
can be found in [1], where the authors outline a residential
gateway architecture which enables communication between
the residence and the utility to enable price and demand
response signals to enter the home. A different set of function-
ality is demonstrated by [2], which supports a Plug and Play
philosophy for integrating new appliances into the residential

This work was sponsored by the California Energy Commission (CEC)
Public Interest Energy Research (PIER) program and the California Institute
for Energy and the Environment (CIEE)

D. Armold is a graduate student with the Department of Mechanical
Engineering, University of California, Berkeley, CA, 94720 USA (e-mail:
dbarnold @berkeley.edu.)

M. Sankur is a graduate student with the Department of Mechanical
Engineering, University of California, Berkeley, CA, 94720 USA (e-mail:
msankur @berkeley.edu).

D. Auslander is a Professor in the Graduate School in the Department of
Mechanical Engineering, University of California, Berkeley, CA, 94720 USA
(e-mail: dma@me.berkeley.edu).

energy network. An architecture suggested by [3] features a
residential energy gateway housed in a television set-top box.

While all of the architectures proposed thus far have merit,
little attention has been paid in academia or industry to address
interoperability issues. In particular, a lack of standardization
in functionality, communications methods, and data structures
has led to increased concerns regarding component/gateway
interoperability when the home or commercial energy net-
works consists of elements of different nature. This issue can
be addressed by an open design featuring a service oriented
software architecture to integrate heterogeneous devices. Such
an architecture is currently being developed in the Mechanical
Engineering Dept. at the University of California, Berkeley.

This paper is organized as follows. Section II describes the
general functionality an EIG is expected to contain and maps
these into a set of requirements in both the residential and
commercial spaces. Section III provides an overview of the
service oriented architecture in which the EIG was created, the
Open Service Gateway Initiative (OSGi). Section IV describes
EIG functionality in the context of OSGi and Section V
discusses results from the deployment of the EIG in managing
a group of appliances during a demand response event.

II. EIG SUPPORTED FUNCTIONALITY

Arguably, the largest causes of interoperability issues
amongst smart grid products stem from dissimilar communica-
tions media and data models. In the residential space, various
energy information networks exist, including those based on
Wi-Fi/Ethernet, ZigBee, ZigBee Smart Energy Profile, Z-
Wave, etc.. In addition, there is no guarantee that devices
which can communicate over the same protocol, Wi-Fi for
example, will have compatible data models. For example,
one device may exchange data in binary format, the other
in Strings. The central thesis of this research project is to
utilize an open software architecture to lessen the burden of
integrating heterogeneous energy related elements.

As such, both the residential and commercial versions of
the Energy Information Gateway created at UC Berkeley were
developed to meet the following objectives:

1 Connect to a wide array of residential and commer-
cial smart appliances

2 Connect to existing, or “Legacy”, appliances

3 Connect to metering devices or building Energy
Management and Control Systems (EMCSs)

4 Connect to the internet

5 Display relevant energy usage information to the
resident

6 Accept input from resident to change (override)

current operating conditions

7 Must be platform agnostic

The requirements of the EIG are purposely kept generic in
order to capture as most of the functionality which currently
exists in various EIG implementations. As an example, func-
tionality such as relaying pricing or demand response signals

into the home or office energy network fall under items 3 or
4.

A. Residential

In order to meet the generic objectives outlined above, the
EIG team adopted a communications hierarchy outlined in Fig.
1. As the figure shows, the Residential EIG, referred to as
the Residential Energy Gateway (REG), facilitates commu-
nications with a wide array of Home Area Network (HAN)
elements, including a user interface, the smart meter, and any
on-site local generation. In addition, with the exception of the
smart meters periodic connection to the utility, the REG is the
means by which HAN energy usage information is relayed to
entities in the outside world.

Residential Energy Gateway

Ml DemandResponse % Vil %
Center 4 Resident Appliances]
User
Interface « refrigerator

« television
Upper
Level/Neighborhood
Gateway

«washer/dryer
«dishwasher

Local
Generation

! |
Electric Utility <—;—.\—)$.
\ i N *small wind #

)

1

| |
1 1
| 1
| 1
1 1
1 1
| 1
1 1
1 1
1 = 1
| Residential. 1
1 Energy Gateway. :
i i
1 1
| 1
| 1
1 1
1 1
| 1
\ |
1 1
1

solar PV ’

Outside World Home Area Network (HAN)

Fig. 1. Block diagram outlining communications capability of a residential
energy gateway. As the figure shows, the REG bridges the gap between the
Home Area Network (HAN) and the outside world.

Given the current lack of standardization for energy com-
munication within the HAN, in order to meet the objectives
outlined in the previous list, three critical issues needed to be
addressed:

1 Allow smart appliances of different manufacture to
interact via the Gateway. Such appliances are be-
lieved to have the ability to communicate their energy
consumption and state of operation

2 Must allow ZigBee, Wi-Fi, Z-Wave HAN elements
to interact with relative ease

3 Provide mechanism for legacy appliances to connect
to the Gateway

Items 1 and 2 refer to the current fractured state of the
smart appliance market, where appliances of different manu-
facture support dissimilar communications protocols and data
structures. This places constraints on consumer choices in
purchasing new smart appliances from different manufacturers.
As such, in order to enable connections to as many smart
appliances as possible, the predominant communications me-
dia must be supported in the REG, this being the ZigBee

Smart Energy Profile 1.0-1.x. This standard is also the medium
through which smart meter communications with the HAN are
accomplished (though this functionality has yet to be activated
in meters at large in California). A Wi-Fi connection easily
allows communication with the outside world though the use
of traditional web services and wireless networks are firmly
embedded in American residences. Enabling legacy appliances
to connect to the REG (item 3) is conveniently facilitated
through the use of ZigBee or Wi-Fi load switches, which
connect in series between the appliances power cord and the
wall outlet. An example of a wall wart load switch is seen in
Fig. 2. Such products are widely available.

=

Fig. 2. Typical wall wart design for series load switch to enable legacy
appliances to connect to ZigBee or Wi-Fi networks, by courtesy of [4].

B. Commercial

EIG requirements for the commercial space are distinct in
two sub-environments: 1) light commercial and 2) commercial
office. In 1) a small office setting closely resembles a residence
and may contain similar appliances. As such, the EIG team
feels the requirements of the REG will satisfy the needs of
this category. In 2) it is envisioned that a commercial version
of the EIG, henceforth referred to as a Commercial Energy
Gateway, or CEG, will operate over a domain consisting of
one or several offices in a larger commercial building. The
development of this CEG is considered here.

Fig. 3 outlines the communications architecture of the CEG
in a commercial office setting. As the figure shows, the
CEG communicates with local appliances and an occupant
user interface. In settings where local control over HVAC
and lighting systems is available, the CEG is expected to
communicate with these entities as well. The CEG may also
communicate with some sort of database where energy related
information can be collected and analyzed. With regard to
entities external to the local office environment, the CEG is
expected to communicate with a building energy management
control system (EMCS) and, possibly, the internet. These
connections will allow demand response signals and other
pertinent information to filter down to the CEG.

Communication protocols in a commercial office setting
are largely expected to consist of those seen in a residential
environment: ZigBee and Wi-Fi. Utilization of these com-
munications protocols facilitates the incorporation of legacy
appliances in the Office Energy Network (OEN) via wall wart
load switches, as seen in Fig. 2.

Commercial Energy Information Gateway

N
4 Demand Response \ 7 >3
Center i Occupant Appliances \

User
Interface

*Laser Printer
+Computers

«Refrigerator
Internet

Commercial
Energy Gateway.

* Local Setpoints

Lighting
and
Occupancy

Database

External Environment Office Energy Network

Fig. 3. The role of the CEG in enabling communications regarding energy
related information in a small commercial office setting. The CEG also enables
communication between the local office and the external environment.

III. OVERVIEW OF THE OSGI SOFTWARE FRAMEWORK
A. Overview

The Open Services Gateway initiative (OSGi) is a dynamic
module system built on top of the JAVA programming lan-
guage. The service oriented framework facilitates the develop-
ment of compartmentalized pieces of code which are highly
interoperable. Developing applications in this fashion reduces
overall software complexity as the code modules, known
as bundles in OSGi terminology, can be written, updated,
versioned, and deployed independently. Bundle interaction is
determined through the use of OSGi services, which facilitate
the integration of third party applications into already existing
programs. OSGi is a widely used software standard and is in-
corporated in applications such as the Eclipse IDE and Spring.
Already four open source implementations of OSGi exist [5].
In addition, the developer community has created large bundle
repositories, providing many useful services, including XML
document handling and web hosting capabilities.

Fig. 4 shows a layered model of the OSGi framework.
In the context of the figure, Bundles are modular pieces of
code created by developers. These bundles are connected via
Services, which create a publish-find-bind model for JAVA
objects. The Life-Cycle layer defines an API to start, stop,
update, install, and uninstall bundles. The Module layer defines
how bundles are able to export and import pieces of code.
Finally, the Execution Environment defines what methods and
classes are available in a specific platform [5].

B. Modules and Bundles

For all intents and purposes, OSGi bundles are simply plain
old JAVA Archive (JAR) files. In normal JAVA programming,
the contents of JARs are visible to all other JARs. Howeyver,
in the OSGi framework, by default, JAR (bundle) contents
are hidden unless explicitly exported to the framework. In
addition, bundles must explicitly import portions of code
which they want to use. This functionality is enabled by the
module layer.

Bundles can interact with each other through the use of
services and the OSGi service registry. An illustration of two

Services

Life Cycle

Modules

Execution Environment

EVER

Native Operating System

Fig. 4. A layered model of the OSGi framework, courtesy of [5]

bundles interacting via the use of services and the service
registry is shown in Fig. 5. As shown in the figure, Bundle
A can create an object which is then bound to a service and
registered with the service registry, denoted by the triangular
block S. Bundle B sees the service registry and can list all
objects which are registered under a certain interface or class
name. Bundle B can import, or get, the object provided by
Bundle A if needed. In addition, bundle B can listen to the
service registry and take specific action when the service
provided by A is added, removed, or changed.

Service Registry Bundl
undle

listen

Bundle

A
register

Fig. 5. Bundles and service interaction through the use of the service registry,
denoted by S, courtesy of [5]

Services in the OSGi framework are dynamic, meaning
that if bundle A withdraws its service from the registry, and
bundle B was using that service, B must discontinue its use.
Such a process allows bundles A and B to be operated on
independently; one bundle can be running, while the other is
being updated or taken off line.

IV. THE EIG IN THE OSGI SOFTWARE FRAMEWORK

Both the commercial and residential versions of the EIG
consist of collections of OSGi bundles. The bundles, in
turn, support a variety of services which enable previously
discussed Gateway functionality. At a bare minimum, the EIG
features several services to support connections over different
mediums, various data management services, and a web user
interface bundle which facilitates resident interaction. These,
and several other important services and bundles are described
in this section. It should be noted that the service oriented
architecture of OSGi allows, in this context, any proprietary
Gateway functionality to be supported in parallel with other
functions provided the proprietary software is cast in terms
of OSGi bundles and services. The services discussed in this
section are meant to illustrate the modular interoperability
potential of the EIG in the OSGi framework.

A. JSON

In order to facilitate communications between bundles and
with the web based user interface, the JavaScript Object
Notation (JSON) format was adopted. JSON is a human-
readable, lightweight data interchange format which is com-
pletely language independent [6]. This structure consists of
objects which are made up of comma separated name/value
pairs (the name/value pairs themselves are colon separated),
where names have the string data type, see Fig. 6.

Objects themselves are surrounded by left and right braces
and individual objects can be placed into arrays which
are surrounded with left and right brackets, see Fig. 7. A
simple JSON object which contains the name of a con-
nected appliance and the appliance state might look like:
{ApplianceName : Refrigerator, State : OF F'}

A typical JSON array in the context of the EIG might
look like: [{ApplianceName Refrigerator, State
OFF}, {ApplianceName : Microwave, State : ON,ID :
1200356 }]

This particular array consists of two JSON objects with
dissimilar name/value pairs (the last object has an additional
pair). This property is exploited in the EIG architecture and
will be discussed later in this section. The supported data types
for values in JSON objects are illustrated in Fig. 8.

object

1

Fig. 6.

JSON object architecture, courtesy of [6]

|—®J[[varee} Loy

'
A

Fig. 7. JSON array architecture, courtesy of [6]

value

L I ctrina L
I | string I

umber L

7=

JSON value supported data types, courtesy of [6]

Fig. 8.

B. Appliance Bundles

For all intents and purposes, an appliance is a generic term
meaning any device which will exchange energy information
with the EIG. In order to connect an appliance to the EIG,
a developer must install a bundle representing that appliance
in the OSGi software framework. This bundle will be the

medium through which communication with the actual device
is bridged with the EIG data structure.

The ability to index dissimilar data into JSON objects and
arrays is quite advantageous in integrating different appliances,
as we assume that the information passed from appliances
into the EIG software framework is not the same. Simply
put, appliances can communicate any information to the EIG
they desire. The unique data from each appliance is mapped
to JSON objects which are then made available to the rest
of the EIG/OSGi framework through a JAVA interface. This
process is illustrated in Fig. 9. As is shown, the appliances
are of different nature as they communicate over different
media (Wi-Fi and ZigBee in this case) and support different
data structures (XML and Strings, respectively). However, the
bundles corresponding to each appliance perform the same
root function of mapping their unique data structures to the
JSON format, and making interfaces to these JSON objects
available to the rest of the framework. These JSON objects
correspond to individual data points for each appliance.

Once the appliance data is in the JSON format, the EIG
provides an aggregation service where JAVA interfaces to these
individual JSON objects are indexed into a JAVA array list, see
Fig. 10. As the figure shows, the Aggregation bundle can index
an arbitrarily large number of JSON objects into a JSON array
list, which is then made available to the Control and Web Ul
bundles.

Gateway/OSGi Framework

WiFi/XML
JSON Obj.

Rest of Framework

Real World Appliance Bundles * Service Registry
«Other Bundles

* Web User Interface

ZigBee/String

1
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
\

Fig. 9. An illustration of the role of appliance bundles in the EIG software
framework. The bundles provide a mapping from their respective appliances
communication and data model to the JSON format.

The upcoming sections describe the services provided in the
current implementation of the EIG. Since the OSGi software
framework allows services to be added and removed dynam-
ically, new services can always be added to the framework
without compromising the functionality provided by existing
services.

C. Connection Services

In addition to mapping data structures, the appliance bundles
written by developers also dictate the connection medium
through which the appliance bundles/EIG communicate with
the appliance itself. The core EIG software provides sev-
eral services for facilitating connections over three different

JSON Obj. 1
—>

JSON Obj. 2
—>

JSON Obj. 3

Control

Appliance JSON Obj. List

Bundles Aggregation

JSON Obj. k
>

Fig. 10. The Aggregation bundle compiles all JSON objects from each
appliance into a JSON array, which is then made available to other Gateway
bundles.

mediums: 1) JAVA Sockets, 2) COM Ports, and 3) SSH
Connections. Appliances bundles wishing to connect to their
appliances over a particular standard can use these services
to lessen the amount of customized code included in their
bundles.

The JAVA Socket service provides an interface to allow
connections over TCP/IP sockets in JAVA. Developers need
only specify a port number over which the connection is to
be made and the JAVA Socket service will create and manage
a socket bound to that port and provides input and output
streams to the appliance bundle for bi-directional commu-
nication. This service allows connections to appliances over
Ethernet and Wi-Fi. It is assumed that the platform which
houses the EIG contains the appropriate hardware and drivers
to allow a connection to a Wi-Fi network. For example, this
functionality was tested on a Netbook, which contains a built
in Wi-Fi radio.

The COM Port service allows appliance bundles to
read/write to a standard computer COM port. In order to
utilize the service, appliance bundle developers must identify
the COM port with which the EIG will communicate and
the service will provide input and output streams to transmit
information between the appliance bundle and the appliance
itself. In addition to standard serial communications using
a parallel, serial, or USB ports, many COTS ZigBee mesh
network equipment provide drivers for their hardware to be
recognized as a COM port by the EIG platform operating
system. One such device is the Telegesis USB ZigBee dongle
pictured in Fig. 11. This particular product provides ZigBee
wireless mesh networking capabilities via a USB to serial
bridge. In actual tests of the EIG, this product was used
in conjunction with COM Port service to connect the EIG,
running on a Netbook, to an appliance over a ZigBee wireless
mesh network.

The SSH (Secure Shell) Service provides access to an open
source library for SSH communications. Appliance bundles
can consume this service to create an SSH connection using
an IP address and a username and password (if required). The
service provides input and output streams to the appliance

Fig. 11. Telegesis ETRX2USB dongle. Provides a USB to serial bridge
allowing for ZigBee wireless mesh networking, courtesy of [10].

bundle for bi-directional communications.

D. JSON Object List Service

JSON List Service provides an interface to access the JSON
objects associated with individual appliances. This service is
provided by the Aggregation bundle, shown in Fig. 10. Also
included in this interface are methods to post data to individual
appliance bundles, also in JSON format. The appliance bundle
developers are meant to interpret these data objects as control
signals, which should then be mapped back into the original
appliance data structure and transmitted from the appliance
bundle to the appliance itself. As Fig. 10 shows, this type of
control is allowed in the Web User Interface bundle and in the
Control bundle, as these are the two bundles which consume
the JSON Object List Service.

E. OpenADR Service

Open ADR, or Open Automated Demand Response is an
open communication standard for enabling demand response
in commercial buildings [9]. In an investigation of demand
response research potential in the residential sector, the EIG
developers created an OpenADR bundle to allow the EIG to
connect to an OpenADR server. This bundle registers Ope-
nADR Service with the framework, which provides a connec-
tion to an Akuakom Demand Response Actuation Server via
traditional web services (REST or SOAP). XML OpenADR
signals are fetched, converted to a JSON format, and then
exported via an interface bound to OpenADR Service for other
bundles to consume. Currently, only the Web User Interface
bundle and the Control bundle consume OpenADR Service.

F. Control

Currently, the Web User Interface allows for supervisory
control over individually connected appliances through access
of JSON Object List Service (see Fig. 10). However, the EIG
contains a bundle, the Control bundle, which consumes JSON
Object List Service and OpenADR Service. This bundle is
provides an environment for developers to design automated

control algorithms which operate on individual appliance data
objects in JSON format (provided by the JSON Object List
Service).

G. Web User Interface

The OSGi software framework provides bundles which
support the hosting of Java Server Pages, or JSP [8]. These
pages allow the interleaving of static HTML with actual JAVA
or JavaScript code, thereby creating a more dynamic web page.
In addition to JSP, OSGi allows for JAVA servlet hosting as
well. A JAVA servlet can be thought of as a JAVA applet that
runs server-side instead of client-side [7]. These servlets syner-
gize well with dynamic client-side scripting techniques (made
available through the use of JSPs), such as JavaScript/jQuery.
In such client applications, JavaScript and jQuery (which is
Javascrpt shorthand) can be used to execute calls to JAVA
servlets independently. This process is illustrated in Fig. 12,
which depicts the Web User Interface bundle hosting three
servlets, each of which interacts with a different portion of
JavaScript code running on a Java Server Page (JSP). An
advantage to this modular approach brought about by the use
of JAVA servlets is that portions of the client side JavaScript
code can refresh the content of a servlet independently, without
refreshing the entire webpage.

Web User Interface Bundle

OpenADR Service

Servlet2

JSON Obj. List
o Javascript/ N

*\._ JQuery Code 5

Servletk

~ -

Fig. 12. Diagram of how JAVA servlets communicate with JavaScript and
jQuery code in a JSP.

V. RESULTS AND DISCUSSION

EIG functionality was successfully tested in a laboratory
setting in a commercial office at the University of California,
Berkeley. For this experiment, an EIG was deployed on
a desktop computer, and was used to manage a group of
simulated and physical appliances.

The simulated appliances were housed on laptops, one of
which supported Wi-Fi connection capability with an XML
data structure, the other supported a connection to a ZigBee
Pro mesh network with a simple String based data structure.
Connection to the ZigBee Pro mesh network was accom-
plished via the use of the Telegesis USB dongle discussed
in the previous section. For each of these two appliances”,
a unique appliance bundle was installed into the EIG OSGi

framework. The appropriate connection service was consumed
to lessen the amount of custom code written in each bundle.
JAVA Socket service was consumed by the Wi-Fi Appliance
bundle, and COM Port service was consumed by the ZigBee
Appliance bundle. In each appliance bundle, code was written
to support a mapping from the physical appliance’s data
structure into the JSON format. This specific example was
illustrated in the previous section when explaining the process
of JSON data mapping (see Fig. 9).

For the experiment in question, connection to physical ap-
pliances was accomplished through the use of an intermediary
device, the Raritan Power Distribution Unit (PDU) [11]. This
device features eight independently metered and actionable
120V electrical outlets. A four outlet version of the device is
shown in Fig. 13. Interaction with each outlet is accomplished
via an SSH connection over IP. To connect the Raritan to the
EIG, an appliance bundle was written which consumed the
SSH connection service. Within the appliance bundle, eight
individual JSON objects were constructed, one for each plug
on the Raritan. Interfaces to all of these objects were exported
to the OSGi service registry and subsequently aggregated into
a JSON object array list in the Aggregator bundle.

Fig. 13. Photograph of the Raritan Power Distribution Unit (PDU), courtesy
of [11].

All of the components previously mentioned are depicted
in a photograph of the test laboratory, shown in Fig. 14. As
illustrated, the Raritan PDU is connected to two appliances, a
desk lamp and a fan. For this experiment, the devices shown
were all actuated in response to an external demand response
event. To enable this capability, a test event was programmed
into an Akuakom Demand Response Actuation Server (DRAS)
which communicates over the web with the EIG via OpenADR
service. Once programmed into the DRAS, the event informa-
tion was fetched by the EIG, which stored the information
until the onset of the DR event, when a pre-programmed
actuation signal was sent to each appliance bundle in JSON
format. Each JSON control signal (actually a JSON object)
was customized for each appliance. The individual appliance
bundles parsed their respective JSON control signal into their
original data format and transmitted the appropriate signal to
the appliances themselves. For the case of the Raritan, the
routing of the appropriate control signal to the correct outlet
was handled in the Raritan appliance bundle. At the onset of
the DR event, which had a 5 minute duration, all appliances

were commanded to shut down. Following the 5 minute event,
another JSON control signal was sent to each appliance,
instructing a return to normal operations. These signals were
staggered by 15 seconds to avoid a large measured energy
spike associated with cold-load pickup.

Web User Interface

ZigBee Appliance

Controlled by Rarit
L

Fig. 14. Photograph of experimental test setup.

VI. CONCLUSION

The EIG has been shown to be able to connect to both
simulated and physical appliances of dissimilar connection
medium and data structure. This ability allows potentially any
appliance to be integrated into the home or commercial energy
networks. The modular nature of OSGi allows new connection
services to be installed while the EIG is running. In addition
the abstraction of unique appliance data into the JSON format
facilitates information transfer from newly added appliances
into the rest of the EIG, via the Aggregation bundle.

Quite unique about the architecture proposed in this paper
is the fact that current proprietary Gateway functionality from
any manufacturer can, potentially, be completely supported
in the OSGi environment. If such proprietary functions are
cast as OSGi services and registered in the service registry,
the proposed EIG architecture would allow the functionality
of different Gateways, which currently are separate physical
entities, to run in parallel on the same platform. Such an
option might be attractive to a consumer wishing to maximize
his/her options in purchasing smart grid products. Simply put,
a service oriented architecture has the potential to eliminate
the need for different proprietary Gateway platforms.

The architecture presented in this paper also presents op-
portunities for the participation of third party vendors in new
markets, namely, the development of appliance bundles and the
development of control strategies to be housed in the Control
bundle. The authors envision, eventually, the availability of a
large repository of appliance bundles and control strategies
on the cloud, from which the resident can select to be
implemented into their EIG.

The authors plan to continue development of the EIG
software to enable connections to ZigBee Smart Energy Profile
1.0/1.x networks, as well as a connection to the smart meter
itself. In addition, integration of the Z-Wave communication

protocol is to be investigated. In the commercial setting, the
notion of inter-EIG communication could be leveraged to
allow different commercial energy networks to “auction” the
ability to shed load during a demand response event.

It should be noted that the presence of EIGs in residences
and in the commercial buildings presents several advantages
from the perspective of the grid/utility in addition to the indi-
vidual occupant who owns/operates the EIG. The EIG provides
not only an energy information communications infrastructure,
but constitutes a measurement and control platform, with
the ability to bridge the gap between cloud resources and
the commercial/residential energy network. As such, energy
related quantities such as residential voltage waveforms and
harmonics measurements could be transmitted to a distribution
aggregation system for, perhaps, real-time analysis and control.
In a companion paper, we outline several scenarios where
using energy information obtained from a residence can be
used to benefit the grid.

ACKNOWLEDGMENT

The authors would like to thank Ron Hofmann and Gay-
mond Yee for their excellent advice throughout the duration
of this research project.

The authors also would like to thank the California Energy
Commission (CEC), the California Institute for Energy and the
Environment (CIEE), the United States Department of Energy
(DOE), and the Siemens Corporation for providing funding
for this research effort. In addition, the authors would like
to acknowledge the fruitful results produced by collaboration
with colleagues at the Lawrence Berkeley National Laboratory
(LBNL), Environmental and Energy Technologies Division.

REFERENCES

[1] A. Cuevas, C. Lastres, J. Caffarel, R. Marfinez, and A. Santamaria,
”"Next Generation Energy Residential Gateways for Demand Response
and Dynamic Pricing,” in Proc. 2011 IEEE International Conference on
Consumer Electronics (ICCE)., pp.543-544.

[2] N. Kushiro, S. Suzuki, M. Nakata, H. Takahara, and M. Inoue, "Integrated
Home Gateway Controller for Home Energy Management System,” IEEE
trans. on Consumer Electronics, vol. 49, no. 3, pp. 629-636, 2003.

[3] A. Pal, C. BhauMik, J. Shukla, and S. Kolay, “Energy Information
Gateway for Home,” in Proc. 2011 IEEE Second International Conference
on Intelligent Systems, Modeling and Simulation., pp. 235-240.

[4] (2011 November) The HAI website. [Online]. Available: http://www.
homeauto.com/main.asp

[5] (2011 October) The OSGi website. [Online]. Available: http://www.osgi.
org/About/WhatIsOSGi

[6] (2011 October) The JSON website. [Online]. Available: http://www.json.
org/

[71 (2011 October) JAVA Servlet Wiki.
wikipedia.org/wiki/Java_Servlet

[8] (2011 October) JSP Wiki. [Online]. Available: http://en.wikipedia.org/
wiki/JavaServer_Pages

[9] (2011 March) OpenADR Wiki. [Online]. Available: http://en.wikipedia.
org/wiki/Open_Automated_Demand_Response

[10] (2011 November) Telegesis ETRX2 webpage. [Online]. Available: http:
/Iwww.telegesis.com/products/etrx2_usb.htm

[11] (April 2011) Raritan webpage. [Online]. Available: http://www.raritan.
com/

[12] (April 2011) Akuakom webpage. [Online]. Available: http://www.
akuakom.com/

[Online]. Available: http://en.

Daniel Arnold graduated with a BS in mechanical
engineering from the University of California San
Diego in 2005. He received his Masters the follow-
ing year in the same department. His research fo-
cused on autonomous, 2-dimensional vehicle naviga-
tion with minimal sensory input. Since receiving his
masters in 2006, Daniel has been employed by the
Space and Naval Warfare Center in San Diego, Ca.
where he worked as a test and evaluation engineer
developing unmanned underwater vehicles. He later
worked for the Naval Facilities Engineering Service
Center in Port Hueneme, Ca, where he researched ocean renewable energy
technologies for application to navy facilities. In the fall of 2009, Daniel began
his PhD studies at UC Berkeley in the mechanical engineering department.
His research is focused on the implementation of residential demand side
management via the introduction of communications infrastructure in the
home. His other interests include power systems, controls and estimation
theory, and robotics.

Michael Sankur is from Ventura, CA. He attended
UC San Diego studying mechanical engineering.
During his undergraduate studies, he worked in
vairous internships, including for SPAWAR and
Hughes Research Labs, and held a research assistant
position for an environmental engineering professor.
After graduating, he earned an MS in aerospace
engineering at UCSD as part of a five-year program.
He then was awarded the NDSEG fellowship and
started PhD studies in the Mechanical Engineering
Dept at Berkeley. He is currently working under
Dr. Dave Auslander. His research interests include plug load control and
communication, and commucation and negotiation schemes between local
plug load controllers.

Dave Auslander David M. Auslander is Professor
of the Graduate School, Mechanical Engineering
Department, University of California at Berkeley.
He has also served as Associate Dean and Acting
Dean of the College of Engineering. He has interests
in dynamic systems and control. His research and
teaching interests include mechatronics and real time
software, bioengineering, and mechanical control.
Current projects in these areas are building energy
control, design methodology for real time control
software for mechanical systems, satellite attitude
control, simulation methods for constrained mechanical systems, and en-
gineering curriculum development. He consults in industrial servo control
systems and other control and computer applications. He is co-founder and
senior technical consultant to Berkeley Process Control, Inc. (now a part
of Moog, Inc.), a company specializing in industrial machine control. His
undergraduate studies were at the Cooper Union and his graduate studies
were at MIT, both in Mechanical Engineering. He has been awarded the Levy
Medal (best paper) from the Franklin institute (twice), the Education Award of
the Dynamic Systems and Control Division of ASME, the Education Award
of the American Automatic Control Council, the Control Practice Award of
the Dynamic Systems and Control Division of ASME, the Donald P. Eckman
Award of the Instrumentation, Systems, and Automation Society, IEEE/ASME
Mechatronics and Embedded Systems Applications (MESA) Career Award,
and is a Fellow of the ASME. He has a longstanding association with the
Dynamic Systems and Control Division of ASME including past service as
its chair and as the editor of the Journal of Dynamic Systems, Measurement
and Control.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /OK
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

