lobojp06 lobojp06
  • 01-02-2017
  • Mathematics
contestada

Verify implicit solution 2xydx+(x^2-y)dy=0; -2x^2y+y^2)=1

Respuesta :

LammettHash
LammettHash LammettHash
  • 03-02-2017
If [tex]-2x^2y+y^2=1[/tex], taking the derivative of both sides wrt [tex]x[/tex] gives

[tex]-4xy-2x^2\dfrac{\mathrm dy}{\mathrm dx}+2y\dfrac{\mathrm dy}{\mathrm dx}=0[/tex]

Solving for [tex]\dfrac{\mathrm dy}{\mathrm dx}[/tex] gives

[tex]-4xy+(-2x^2+2y)\dfrac{\mathrm dy}{\mathrm dx}=0[/tex]
[tex](-2x^2+2y)\dfrac{\mathrm dy}{\mathrm dx}=4xy[/tex]
[tex](-2x^2+2y)\mathrm dy=4xy\,\mathrm dx[/tex]
[tex](-x^2+y)\mathrm dy=2xy\,\mathrm dx[/tex]
[tex]0=2xy\,\mathrm dx+(x^2-y)\mathrm dy[/tex]
Answer Link

Otras preguntas

Right Answer Please Lee la frase y escoge la opción correcta para terminar la frase. Read the sentence and choose the correct option to complete the sentence. A
Find the surface area of the figure. Round your answer to the nearest hundredth if necessary.
Question 2 (1 point) What is a MAIN motivation of many entrepreneurs? Question 2 options: the need for steady employment the hope of making large profits the
Please answer this question only if you know the answer!! 39 points and brainliest!
Does anyone know the answer??
what are facts about a surgical technologist?
How is isometric transformation different from similarity transformation
The annual defense budget in the united states is about
Write a general formula to describe the variation: x varies jointly with the inverse of the sum of y and z
correct order to represent renal circulation ​